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Abstract. Linear spin wave theory usually provides reliable indications about the 
absence of long-range order (LRO) in Heismberg models. Here we study the equi- 
librium configuration of the three-dimensional Heisenberg model with competitive 
interactions in the neighbourhood of the phase boundary between the ferromagnetic 
and helical phmes whcrc linear spin wave theory suggests Lhe absence of LRO caused 
by a m / t  k t  behaviour of the spin wave energy in the long wavelength Limit. To 
assess the reliability of this indication we have studied the twrrmagnon hound states 
which exist below the two-magnon band over the whole Brillouin zone in all -es 
where exact results assure the absence of LRO. W e  did not find any hound s ta te  
for sufficiently smdl wavevectors on the ferrc-helix transition line. So we have per- 
formed a controlled low-temperature calculation beyond the linear approximation for 
the spin wave spectrum and the order parameter. We have proved that non-linear 
contributions restore LRO in conlrast with previous speculations. 

1. Introduction 

The lowest lying excitation in the Heisenberg model is the single spin wave (SW) 
when long-range order (LRO) is present [I]. This is the case of the three-dimensional 
Heisenberg model with nearest neighbour (NN) ferromagnetic interaction for which 
linear SW theory provides the ezacl low temperature thermodynamics [2]. The scenario 
is completely different in one and two dimensions where the LRO is absent as is required 
in both the Landau argument [3] and the Mermin and Wagner theorem 141. In both 
cases the SW mode is still an exact eigenstate of the model when the NN interaction 
is ferromagnetic but it is no longer the lowest one. Two-magnon bound states exist 
below the two-magnon band for all wavevectors, whereas in the three-dimensional 
model no bound states are found below the two-magnon band, for sufficiently small 
wavevectors [5] .  Even for layered structures, where the in-plane exchange coupling 
J is greater than the inter-plane coupling J’ no hound states below the two-magnon 
band exist in the neighbourhood of the zone centre for any J‘ # 0. Notice that in 
all such examples the existence of the bound states for all wavevectors is concomitant 
with a catastrophic occupation number of long wavelength magnons that causes the 
failure of LRO. 

For this reason it is suggested that the presence of the two-magnon bound states 
below the two-magnon band until zero wavevector should signal the absence of LRO. 
This suggestion provides a useful test for the possible absence of LRO indicated by 
approximated arguments. 
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Here we consider the Heisenberg model with in-plane competitive interactions up 
to third neighbours, the N N  one being ferromagnetic, while only NN spins on adjacent 
layers are coupled. This model shows a rich phase diagram in the parameter space 
with two different helix phases (H,, H,) and two colinear phases (AF, F) [6-81. This 
model, called the 3N-mode1, is expected to be disordered on the Hl-H2 and F-H 
phase boundary until zero temperature on the basis of the linear SW approximation 
because a divergent spin deviation from its saturation value is noticed at any finite 
temperature by t.he existence of soft lines [9] in the SW spectrum on the H,-H, line 
and by a peculiar softening of the SW spectrum at long wavelengths [7l on the F-H 
line. 

Here we calculate the two-magnon bound state energy only on the F-H phase 
boundary. Notice that the model on this line shows a two-dimensional-like behaviour 
in the linear SW approximation [7]. Indeed in the small wavek'ector limit the magnon 
energy shows a k4, behaviour, k, being the projection of the wavevector on the basal 
plane. Such behaviour leads to a divergent number of spin deviations in spite of the 
three-dimensional nature of the model. If this fact is genuine evidence of the absence 
of LBO, bound states below the two-magnon band until the zone centre should be 
expected. On the contrary we find that the bound states exhibit a three-dimensional 
behaviour which usually occurs when LRO is present. A careful criticism of the simple 
SW argument suggests that the scenario is totally different from that expected on the 
basis of the linear S W  approximation. 

The format of this paper is the following: in section 2 the two-magnon bound state 
energy is evaluated on the F-H phase boundary. In section 3 we prove the existence 
of LRO on the F-H line taking into account the non-linear contribution a t  the lowest 
order in 1/S and temperature. In section 4 we give the summary and concluding 
remarks. 

2. Two-magnon bound states for the 3N model 

Non-conventional ground state configurations in Heisenberg models, that is non- 
colinear and non-helical configurations, are believed to be possible in particular regions 
of the parameter space corresponding to suitable exchange competition [lo]. The on- 
set of these unorthodox phases has been ascribed to zero point quantum fluctuations 
that are responsible, for instance, for the spin liquid phase in Heisenberg antiferro- 
magnets in the neighbourhood of the transition between Nee1 and helix configurations. 
A strong indication of this is provided by a divergent spin reduction arising from soft 
lines in the magnon excitation spectrum [lo]. Other examples exist where the critical 
dimensionality seems to be lowered from D = 3 to D = 2 for Heisenberg models. In 
particular we focus on the 3N Heisenberg model with aferromagnetic NN interaction on 
the F-H phase boundary [7l where the magnon dispersion curve shows a k4, behaviour 
at long wavelengths inst.ead of the usual k: behaviour. In this case linear SW theory 
leads to a divergent occupation number which causes a divergent demagnetization at 
any finite temperature. This could imply the existence at any finite temperature of a 
spin liquid phase in the neighbourhood of the F-A transition line. 

Let us give a brief sketch of the argument supporting this conclusion. The Hamil- 
tonian we consider reads 
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where 6, and 6' are vectors joining site i with its neighbours of the orth shell and 
with its out-of-plane NN,  respectively. Here the NN in-plane J ,  and the outof-plane 
J' exchange couplings are positive, while the next nearest neighbours (NNN) Jz and 
the third nearest neighbours (TNN) J ,  coupling can have either sign. If J ,  and/or J3 
are negative, the competition between exchange interactions can lead to helical states. 
On the other hand, there is no competition due to J':  the spins in each basal plane 
have identical orientations. The SW energy in the ferromagnetic configuration reads 

liw, = S J , S { l -  $(cosak,+cosaky)+j2(1 -cosak,cosaky) 

+ j3[1- $(cos2ak,+cos2aky)]+ $j'(l -casck,)} (2.2) 
where j, = J,/J1, j' = J ' / J 1 ,  a and c are the in-plane and out-of-plane lattice 
constants. As one can see the coefficient of kf vanishes on the F-H phase boundary 
given by 1 + Z j ,  + 4j3 = 0, j3 < 0 [6]. 

The expectation value of the magnetization evaluated by means of linear sw ap- 
proximation is affected by a divergent number of spin deviations that leads to the t - j ,  
phase diagram shown in figure 1 for j ,  = 0 and j' = 0.01. The reduced temperature 
is 1 = kBT/2J ,S .  The qualitative features of the phase diagram do not change along 
the F-H phase boundary. Clearly we refer to the range where the zero temperature 
F-H phase transition is continuous. This is assured on a large portion of this phase 
boundary even if this phase transition becomes first order in the neighbourhood of the 
F-H-AF triple point owing to long wavelength quantum fluctuations [8]. 

0 
-0.25 -0.2 

J3 
Figure 1. t-ja phase diagram of the 3N model for jz = 0, js > - f and j' = 0.01 as 
obtained either from Linear sw approximation (chain m e )  or h m  H F  approxima- 
tion ( f d  curve). F and P mean ferromagnetic and paramagnetic phase, respectively. 

Here we search for the two-magnon bound states because we expect that their 
existence below the two-magnon band until the zone centre should be a reliable test 
for the twc-dimensional-like behaviour suggested by the linear sw theory on the F- 
H line. Let us consider the two-magnon eigenstate 19) for the bosonic equivalent 
Hamiltonian obtained from the Heisenberg Hamiltonian (2.1) by the Dyson-Maleev 
transformation [2]. 

(2.3) 
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where 
k , = $ g + k  k , = $ q - k  

and f , ( k )  satisfies the following equation 

where zu is the coordination number of the a t h  shell of neighbours 

h u = E - E o  (2.7) 
where E is the eigenvalue of the eigenstate In) and Eo is the energy of the ferromagnetic 
ground state IO). The solution of equation (2.5) is obtained by looking for the zeros 
of the following determinantal equation 

(D ,  COS in, - Dm,*) = 0 (2.8) I 3m 

where 

with 
(2.11) 

k, = ak, k, = ak, k, = a(k, + k,) k4 = a(k, - k y )  
k, = 2ak, k6 = 2ak, k, = ckz (2.12) 

j, = j ,  = 1 j, = 3, = j, j s  = is = j ,  j ,  = j'. (2.13) 
The explicit forms of the 0,s and D,,,s are given in the appendix. The evaluation 
of the bound state energy has been performed by solving numerically equation (2.8) 
for S = i. We have found bound states for selected values of the exchange parameter 
on the F-H phase boundary. Explicit calculations have been done for the (1,1,0) and 
(1,0,0) directions. In figure 2(a) weshow the bound state dispersion curve for j ,  = 0, 
j, = -;, J - 0.01 along the (l,l,O) direction. In figure 2(b)  we show the same for 
j' = 0.001. As one can see two bound states appear in the (1,1,0) direction. Notice the 
peculiar q4 dependence of the lower bound of the twwnagnon band (continuous curve) 
in the long wavelength region. Figure 2 ( c )  gives the bound state along the (l,l,O) 
direction at the triple point F-II,-A,. In the (1,0,0) direction only one bound state 
exists as shown in figure 2(d) for j ,  = 0, j ,  = - 4  and j' = 0.001. We have found that 
the bound state existence region is narrowed by increasing S and/or j ' .  

In this section we have found the bound state on the F-B transition line and 
we have numerically shown and analytically checked that no bound states exist for 
sufficiently long wavelengths. Such a fact is usually a good support for the existence 
of LRO, whereas linear SW theory suggests no LRO on the F-H phase boundary. 

1 ', - 
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j ' = 0.001. As one can see two bound states appear in the (1,1,0) direction. Notice the 
peculiar q4 dependence of the lower bound of the tmpemagnon band (continuous curve) 
in the long wavelength region. Figure 2(c) gives the bound state along the (l,l,Cl) 
direction at the triple point F-H,-H,. In the (1,0,0) direction only one bound state 
exists as shown in figure 2 ( d )  for j, = 0, j, = - $  and j' = 0.001. We have found that 
the bound state existence region is narrowed by increasing S and/or j ' .  

In this section we have found the bound state on the F-H transition line and 
we have numerically shown and analytically checked that no bound states exist for 
sufficiently long wavelengths. Such a fact is usually a good support for the existence 
of LRO, whereas linear SW theory suggests no LRO on the F-H phase boundary. 

3. Spin wave renormalization and LRO supported by non-linear effects 

The contrasting indications about LRO for the 3N model on the F-H phase boundary 
obtained from linear SW t,heory and from the features of the two-magnon bound states 
in the long wavelength region call for a controlled approach to account for the effect 
of non-linear contributions on the sw energy and the spontaneous magnetization. We 
evaluate the self-energy E t )  at the lowest order in 1/S and temperature, that is the 
Hartree-Fock (HF) approximation. 

The renormalized SW spectrum witliin the HF approximation reads 

where 

The reduc 

where 

i spontaneous magnetization is 

where Im means imaginary part. The limit q + O+ has to be performed. The Green 
function is given by 
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Figure 2. (a) Lower bund of the 
tw-magnon band of the 3N model for 
j 2  = 0, j s  = -1, j’ = 0.01 in the 
( l , l , O )  direction ( I d  cwve). The bro- 
ken curve is the bound slate energy 
<=~18J,Sasfunctionofthcreduccd 
wavevetor aqIr,  ( 6 )  The same 86 for 
figure Z ( a )  but j ’ = 0.001. (c )  The 
-e as for figure 2(a) but j, = -1 I ’  
j s  = . This point is a triple point 
where the two helical phases HI and 
H2 merge into the femmagnetie phase 
(F) 161. ( d )  The same as for figure 2 ( b )  
but the wavevetorisal~ngtbe(l ,O,O) 
direction. 
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d 

Figure 3. Reduced spontmeous magnetization o against reduced temperature 1 = 
k g T j 2 h S  in the KF approximation for j ,  = 0 and j ,  = - f :  full curve refers to 
j‘ = 0.01; chain cwve refers to j’ = 0.001. 

Within the approximation we have performed the order parameter is 

The crucial point is that  the coefficient of the b i  contribution in equation (3.2), which 
is strictly zero at zero temperature on the F-H phase boundary, is restored by thermal 
fluctuations. We stress that this is a reliable controlled result which clarifies a scenario 
which differs dramatically from the indication of the linear approach. The order by 
thermal disorder, suggested in the past for classical systems [ll], is now proved for a 
quantum system. 

Let us give the behaviour of the renormalization coefficients p for j ,  .= 0 and 
j 3  = - a  at temperatures lower and higher than the inter-plane coupling j’. 

, 0.01931 t Z  p Y-- 
0.04146 t3I2 p 1  Y -- s ~ 3 1 2  S V T  

(3.9) 

for t = kBT/2J,S < j’ 

for t > j ‘ .  Moreover pz Y 2p1 and p 3  Y 4p1. 
Finally we show in figure 3 the order parameter (3.5) plotted against temperature 

for j ,  = 0, j ,  = -4 and j’ = 0.01, O.GO1. As one can see the LRO is clearly assured 
but a very peculiar behaviour is seen.The customary P I 2  low-temperature behaviour 
(Bloch’s law) shown by a system in the ferromagnetic configuration is dramatically 
changed. The physical reason is the vanishing of the k: coefficient in the SW spectrum 
for vanishing temperature that causes a sharp low-temperature decrease in the mag- 
netization. At intermediate temperatures the demagnetization slows down because 
thermal flnctuations support the stability of the system. 
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Tlie result we have obtained gives some valuable indication about the phase dia- 
gram of the model in the neighbourhood of the F-H transition line. The expectation 
of a disordered phase at any finite temperature for Hamiltonian parameters corre- 
sponding to a ferromagnetic ground state has to be definitively ruled out. We stress 
that the ferromagnetic configuration for the interaction parameters we consider is not 
simply suggested by the mean field approximation, but it is assured on the basis of 
an infinite resummation [SI of all zero temperature contributions to the ground state 
energy coming from long wavelength quantum fluctuations within Q4 where Q is the 
turn angle between NN spins. In figure 1 we show the phase diagram obtained by the 
HF approximation in comparison with that obtained by the linear SW theory. 

Clearly our approach cannot be extended directly into the helical region because 
any perturbation approach suffers from dramatic drawbacks when the ground state 
configuration is not colinear [12], because the SW states become unstable owing to 
quantum fluctuations around the Goldstone mode corresponding to the classical hclix 
wavevector. So variational approaches have to be invoked [I31 but the control of the 
approximation is lost and exact results cannot be obtained. 

4. Summary and conclusions 

In this papcr we have shown a somewhat rare example of the importance of non- 
linear effects for the equilibrium configuration of the Heisenberg model. We have 
considered the so called 3N model where the in-plane exchange interactions extend 
up to third neighbours. The NN in-plane interaction is ferromagnetic and the inter- 
plane interaction couples only NN spins. The zero temperature phase diagram in the 
classical approximation is divided into four regions corresponding to ferromagnetic 
(F), antiferromagnetic (AF) and two helical (HI, H2) configurations [6]. Here we 
have studied, in particular, the configuration of the model on the F-H transition 
line a t  finite temperature. Linear SW theory suggests the absence of LRO because 
the SW spectrum shows a k4, dependence in the long wavelength limit instead of the 
customary quadratic one. This causes a catastrophic number of spin deviations on 
the basis of the linear SW theory. Tlie critical dimensionality seems to be lowered 
to D = 2 and a disordered phase is expected until zero temperature as illustrated in 
figure 1. We have tested this result by evaluating in section 2 the twemagnon bound 
states on the F-H phase boundary because the existence of bound states over the 
whole Brillouin zone indicates the absence of LRO as one can see when exact results 
exist. This occurs, for instance, in the one- and two-dimensional ferromagnet with 
NN interaction [3-51. The results we obtained shown in figure 2 definitely exclude 
a two-dimensional-like behaviour of the bound states which indeed do not exist for 
sufficiently small wavevectors. 

In section 3 we solved the question by evaluating the SW energy and the order 
parameter in the HF approximation that accounts for non-linear contributions a t  the 
leading order in  1/25’ and temperature. Notice that in all known cases the HF con- 
tribution gives only a slight temperature renormalization of the SW energy and no  
dramatic effects are found 1141. On the contrary non-linear contributions become 
dominant on the F-H phase boundary. A temperature-dependent coefficient of k: in 
the S W  spectrum is created and this restores LRO. Peculiar features in the spontaneous 
magnetization appear because the stabilizing ki coefficient vanishes with vanishing 
temperature so that a very steep thermal demagnetization appears in the low tem- 
perature region as it is shown in figure 3. Our conclusion about the restoration of 
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LRO on the F-H line does not contrast with the extension of the lllermin and Wagner 
theorem we have performed 1151 just for the model we have studied here. On the 
basis of the Bogoliubov inequality we have proved the existence of a surface in the 
parameter space where the model is disordered at finite temperature. In the present 
paper we have considered the region of the phase diagram that at zero temperature 
corresponds to a ferromagnetic configuration so that the surface where no LRO exists 
has to be searched in the region of helical configuration. 

Appendix 

In order to perform numerical calculation we replace the sums over the Brillouin zone 
that appear in equations (2.9) and (2.10) by an integration as follows 

where x = ak, ,  y = ak 
denominators of equations (2.9) and (2.10) read 

and z = ck,. As functions of these new variables the Y 

d(c, q, I, y, z )  = c - c ( q ,  r,y) - j'+ j'cos(cpz/2) cosz ( A 4  

where 

c(q,x,y) = 2-cos(a9,/2)cosx- cos(aqy/2)cosy+ 2j,[l -cos(aqz/2) 

x cos(a9,/2)cosxcosy - sin(aqZ/2)siu(aq,,/2)sinxsiny] 

+ j,(2 - cos a9= cos 2 1  - cos 09, cos 2y). ('4.3) 

The integration over z can be performed analytically. For instance, for D, and Dm,* 
with m,n # 7 in which numerators are independent of z ,  one has  

D(f, q, X,Y)  = 4 1 6  - 4q, SI) - i l z  - iz cos2(cq,/2). (-4.5) 

The upper (lower) sign in equation (A.4) refers to values of E lying below (above) the 
two-magnon band 

E ,  = E(P,X,Y) +j'[l -cos(cq,/2)cosz]. ('4.6) 

For values of E inside the band the integral (A.4) is zero. Since we are interested 
in bound states below the two-magnon band we neglect the lower sign in (A.4) and 
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- cos y cos 2y 
dx dy D15=m/:/: D(c,q,x,y)  

1 -cos y cos 22 
D16 = (2.)2 / -1 / - x  dxdy D(c,q, x, y) 

1 

-cos2x(cosxcosy- sinxsiny) 
dx dy 

D(c, %">Y) 

- cos2x(c~sxcosy+  sinxsiny) 
dx dy 

D( r ,q ,x ,y )  

1 - cos2 2y 
D55 = (2.)2 J!: J_: dx dYD(c, q, x, y) 

1 - cos 21 cos 2y 
56 - - 7 ( 2 4  J -r J -* dxdy D(c,q,x,y) 

5871 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 
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For directions of high symmetry as, for instance (l,l,O), the number of independent 
0 , s  and D,,,"S reduces noticably. In particular for j 2  = 0 , j ,  > -i and for small 
j ' ,  the zeros of the determinant (2.8) are the solutions of the two following equations 

(I-&,&) ( I -  & I , ~ ) - & I , J , ~ = O  

(A.42) 

(A.43) 

(A.44) 

(A.45) 

(A.46) 

(A.48) 

(A.49) 

where 

A ( c , q , z , ~ )  = 2 -  cos(aq/~)(cos z + cosy) + 2 j3[1 + cos aq( 1 - cos2 z - cos2 y)] + j' - E 

(A.51) 

and 

(A.52) 

Notice that I,,, I,, and I,, are regular even for j' = 0 and the bound state 
corresponding to  the solution of (A.42) exists only near the zone boundary. For 
j ,  = -$, j' = 0.01 and j '  = 0.001 this bound state merges into the two-magnon baud 
a t  q = 0.933a/a and q = O.Q30a/a, respectively. In contrast I,,, I,,, and I,, are 
logarithmically divergent for j' -t 0. This implies that  (A.43) has a solution over an 
increasing portion o f ~ t h e  Brillouin zone until the whole Brillouin zone is covered a t  
J" = 0. For j' = 0.01 and j' = 0.001 this bound state merges into the two-magnon 
band at q = 0.810x/u and q = 0.731?r/a, respectively. Notice that even if the lower 
bound of the two-magnon band shows a peculiar q4 behaviour a t  long wavelengths 

(A.53)  
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the integrals involved in (A.43) do not show any anomalous behaviour. 
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